Solution by Elsie M. Campbell, Dionne T. Bailey, and Charles Diminnie,
Angelo State University, San Angelo, TX

To begin, the given polar equation can be written in z and y as follows:

by? +2zy — br? = a. (1)
Noting that (1) has the form D2? + Ezy + Fy? = a, the angle of rotation is found to be
E 1
ta,n(29) == m == —5- (2)

With some perseverance and the standard rotation formulas with = ucos(6) — v sin(6)
and y = wu sin(f) + v cos(d), (1) can be written as

(sin(20) — b cos(29))u2 + (b cos(26) — sin(29))112 = a. (3)
. . 1 b o
Thus, using (2), sin(20) = TET and cos(20) = — NEERE (3) can now be simplified and

displayed in standard form of a conic as

VB2 +1u? — V2 +10v2 =a
2 2
u v
a - a =1. (4)
V21 VB2t
If we consider A to be the distance from the center of the hyperbola to a vertex, B to be the

distance from the center to an end of the conjugate axis, and C to be the distance from the
9 a

a
center to a focus, then from (4), A2 = ——, B = , and
@ Vo2 +1 Vb2 +1
2a
c? = A+ B= . 5
—— (5)
C
Using (5), eccentricity is defined to be e = — = /2. Thus, there do not exist nonzero

A
constants a and b to yield a rational eccentricity.

Editor's comment: This problem appeared before in this column as problem 5304; mea
culpa, once again.

Also solved by Arkady Alt, San Jose, CA; Hatef I. Arshagi, Guilford Technical
Community College, Jamestown, NC; Bruno Salgueiro Fanego, Viveiro, Spain;
Ed Gray; Highland Beach, FL; Kee-Wai Lau, Hong Kong, China; Toshihiro
Shimizu, Kawasaki, Japan, and the proposer.

5387: Proposed by Arkady Alt, San Jose, CA
Let D:={(z,y) |z,y€ Ry, x #y and 2V = y*} .(Obviously z # 1 and y # 1 ).

-1 —1N\ 1
Find sup (&)
(z,y)eD 2

Solution 1 by Henry Ricardo, New York Math Circle, NY
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The power mean inequality gives us

x~! +y_1

vy = (T < e = v

so that

-1 —1\ —1
T
sup (%) < sup +zy.

(z,y)eD (z,y)eD

Now it is well known that the general solution of the equation z¥ = y® in the first quadrant
is given parametrically by

1 u 1 u+1
x=<1+—) , y=<1+—> , u >0,
U U

a form attributed to Christian Goldbach. This gives us
1 u 1 u+1
Ty = <1+—) -<1+—> ,
u U

-1 —1\ 1
sup <w> = 7}i_)11010w/xy = Ve-e = e.

(@.y)eD 2

implying that

Solution 2 by Toshihiro Shimizu, Kawasaki, Japan

It is well-known that for any positive integer n,

e =((+5) " (02)7)

satisfies the equation x¥ = y* and = # y. Letting n — oc, both z and y converges to e.
Thus, the value ((z=! +y~1)/2)~! also converges to e.

Next, we show that for any real number satisfying z¥ = y*, x # y, the equation

(7' +9y~1)/2)7! < e holds. 2¥ = y* is equivalent to logx/x = logy/y. Since logx/x is
negative and monotone decreasing for z < 1, and it’s positive and monotone increasing for
1 <z < e and also it’s positive and monotone decreasing on e < z, it is obvious that

1 < z,y and without loss of generality , we assume y < e < . We write x = 1/s, y = 1/t.
Then, s < 1/e < t and slog s = tlogt. The inequality ((z~! +y~1)/2)~! < e is equivalent to
l/e<(s+1)/2.

Let f(z) = zlogz. Then, f'(z) =1+ logx, f"(x) = 1/x, f"(x) = —2=2 < 0 for = > 0.
Thus, f'(x) is concave and it follows that

FEO+FC-2) _ yzt2—z 1
5 Sf(T)—f(g)—O
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for any z > 0. Integrating from z = s to z = 1/e, we get

r/e) = f(s)+ FE —s) = f(l/e) _ 0
2 — Y
or f(2/e—s) < f(s) = f(t). Since, f(z) is monotone increasing on 1/e < z, it follows that
2/e — s <torl/e<(s+t)/2. Therefore we have shown that ((z=! +y~!)/2)~! < e for any
(x,y) € D.
Finally we conclude that the supremum value is e.

Solution 3 by Bruno Salgueiro Fanego, Viveiro, Spain

In is known that D N {(377 Y|z £ 1Ly #1 } can be parametrized by
(0,1) U (1,4+00) >t — (2(t),y(t) ) = (tt,lth).
y(1)

(Note that ¢ = = is the slope of the line from (0,0) to (z(¢),y(t)); moreover,

x(t)

1 1 1 t
tT—1 - 4T=T =T =T -
y(2)*® = (tt—%) Lkt e L e et (ttﬁ)fﬁ‘—f = 2(t)V),

Hence,
<w(t)_1 + y(t)_1>_1 C2u(ty() 2T ogrT 2T g
2 e(t) +y(t) g7 g T (14 L
2uuil
Let us define (0,1) U (1,00) 3 u — f(u) = T

Then f'(u) = e (2u(;22__1(;§ SO

u € (1,400), with implies that f is strictly increasing in (0, 1) and strictly decreasing in
(1, +00), which implies that

so f'(u) >0 for u € (0,1) and f'(u) < 0 for

su w) = lm f(u) = lim - lim yv-1 = mys-1 =e u=
ue(oyl)UI()l,-l-oo) ®) u—1 @) n=lu+1 usl n—1

u 1 —un (1 —
lim In w1 lim % Inw 11¢1—>mlu—1 _Z n 7.];,1—>H11u
—=e

u—1

— eu—l — eu—1l —e n=1

limwu +
-1 -1\ ! -1 -1\ 1
t t
Thus, sup <w) = sup <x( ) +y®) ) = sup fit)=e.
(z,y)€D 2 t€(0,1)U(1,4-00) 2 t€(0,1)U(L,+o00)
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Solutions 4 and 5 by Michael Brozinsky, Central Islip, NY

2
For simplicity, we shall use iy , which equals the given expression.
Y
We shall also use the Lambert function W (z) which is the inverse of f(x) = = - e® (with the

1
domain of f(x) being {—1,00) so that W(z) has domain [—E, oo) and
W(x-€e*) = zifax>—1and

= W(x)-eV@® if >

1
c (*)

In(z) In(y) In(¢)
= Ty W :

on (0,1), one to one and positive on (1, e) and one to one and positive on (e, c0) and since
x # y, we can assume that 1 < y < e and x > e so that in particular In(y) > —1 and from
(), W (= In(y) - e~ ®)) = —In(y) which we will encounter later when we obtain (xx)
below.

From y* = z¥ we have , and since F'(t) = is one to one and negative

1 1
From y* = z¥ we have by raising both sides to the — power that yv = 27 . The left hand
zry

e~ In(y) _ 611’1(:(/)-67 In(y)

1
side can be written as (eM®))v = (e@)) and so we have
en®)e” ™ _ 45 If we take natural logs of both sides of this equation and multiply both
sides by —1 we have
—In(z)

—1 Lo~ In(y) _
n(y) e ;

(1).

Now —In(x) S 1 . In(

1
— (since ——= has it s maximum of —) when x = e and thus
x e x
1 1
w (—%) >—landso 1+ W (—%) > 0. (Note W(u) > —1 with equality only if

u:—g).

Taking W of both sides of (1) and using () we have from (1) that
1
—In(y) =W <—¥> (%) and so

_In(z)
Y — 1 _ 1 _ using(+) W( T ) _ T W _ln(:c)
e— In(y) eW<_ lnim) ) _ In(z ln(x)

The expression whose supremum we wish to find is thus

by 2oty W (H)) v ()

= (5 % )
In(z) 2w (= 2@
z+y x—l—(—ﬁ-W'(— T )) ln(m)(m—%)




1

- d
M@ (W) +1) o

Now differentiating the second equation in () shows W’(x)

differentiating (x * %) gives, after simplification

" <_m§:x)>2 (1) -w (-72) —2)  2In(y) (In(z) + In(y) — 2)

= using (xx) (1).

<1n(x> _w @@))2 <1 o <_ ina) )) (In(z) + In(y))? (1 - In(y))

In(x)

Recall 1 —In(y) =1+ W (T) > 0. The expression in (1) thus is positive when

In(z) +In(y) — 2 < 0 and negative when In(z) + In(y) — 2 > 0. This last expression in (* * *)
increases if zy < €? and decreases when zy > €2 and thus has maximum of e when zy = €2
and so e is the desired supremum.

Solution 5

2x
For simplicity, we shall use +y , which equals the given expression. From y* = z¥ we have
Y

1 1 1
In(z) = In(y) (A), and since F'1(t) = @ is one to one and negative on (0, 1), one to one
x

Yy
and positive on (1, e) and one to one and positive on (e, o0) and since x # y, we can assume
that l<z <eandy>e

Now since y - In(z) = z - In(y), we have that y - In(z) —2z =z - (In(y) — 1) > 0 (%). Since

d%: (u(z)*@)) = u(z)*@ . (%u’(x) +1In (u(z)) - v’(x)) we readily have from y* = z¥ by

2
y
y-In(y) = — d ( 22y ) 2 (z%y +v?)

implicit differentiation that ¥ = ———————% and since — = we
Hp ' et Y y-In(x) —x dr \z+vy (x+y)?
have by substitution that

d < 2xy ) 2y (In(y)2? + In(a)y? — 22y)
de \z+vy/) (yIn(z) — z) (z + )

and factoring out zy

2272 <¥m + My - 2)

X
- d si Yy _ %
(Zl/ 111(:17) — aj)(m + y)2 , and since r o,

2y <1n(;y) + ln(f) - 2)

(yIn(z) — z)(z + y)?

2zy? (In(x) + In(y) — 2
(yIn(z) —2) (z +y)*




The expression is thus positive (recall yIn(z) — 2 > 0) when In(z) + In(y) — 2 < 0 and

: eyt
negative when In(z) + In(y) —2 > 0. Thus sup (———
(z9)€D 2

decreases when 2y > e? and so e is the desired supremum.

) increases if 2y < €% and

Editor's comment: Michael Brozinsky also submitted two more solutions to this problem,
each in the spirit of solutions the above.

Also solved by Hatef I. Arshagi, Guilford Technical Community College,
Jamestown, NC; Kee-Wai Lau, Hong Kong, China; David Stone and John
Hawkins, Georgia Southern University, Statesboro, GA, and the proposer.

5388: Proposed by Jiglau Vasile, Arad, Romania

Let ABC'D be a cyclic quadrilateral, R and r its exradius and inradius respectively, and
a, b, c,d its side lengths (where a and ¢ are opposite sides.) Prove that

R2 a?c? b2
r2 T b2d?  a2c?’

Solution 1 by Toshihiro Shimizu, Kawasaki, Japan

Remark: We assume that ABCD is inscribable (and thus ABCD is bicentric) and excircle
is circumcircle.

Let the circumcircle and incircle of ABCD be I'(with center O), I''(with center I),
respectively. We fix I,IV and move A such that ABCD has circumcircle I' and incircle T".
The existence of such quadrilateral is assured by the Poncelet’s closure theorem (see also
https://en.wikipedia.org/wiki/Poncelet%27s_closure_theorem).

If I and I are concentric, the quadrilateral is square and we can easy to check that R = v/2r

and % % = 2. Thus the equality holds. We assume that I" and IV are not concentric.

. 2 2 22 . . .
As A vary, we only show the case when (r.h.s), that is 777 + %%7, is maximum. The value is

maximum when g—; is maximum. We calculate the maximum value.

Let P be the intersection of AC and BD. Let W, X,Y, Z be the tangency point of IV with
AB,BC,CD, DA, respectively.

Then, we show the following lemma. The point P is a fixed point as A varies. Let FE be
the intersection of AB and C'D. Let F' be the intersection of BC' and DA. Since the
quadrilateral ABCD is inscribable, AC, BD, ZX, WY are all concurrent at point P. (it
can be shown by Brianchon’s theorem and we omit) Then, ZX is the polar line of F' with
respect to IV and WY is the polar line of E with respect to I'V. Thus, F'E is the polar line of
P (intersection of ZX and WY') with respect to I''. Moreover, F, P is on the polar line of F’
with respect to I and F\, P is on the polar line of E with respect to I'. (This fact is well
known and I saw it in my Japanese book.) Therefore, EF and P are polar line and pole
with respect to both I" and IV. We will show that this situation only occurs when P is one
of the particular two points. More precisely, since E'F' is polar line of P with respect to both
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